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Science changes as its methods change: each new method (think of the telescope, the 
microscope, the mathematics of crystallography) brings a new mode of understanding and 
changes what we see. In economics methods have changed many times, as geometry, algebra, 
calculus, and statistics have been introduced. Each of these has provided a new mode of 
understanding and each has changed economics in its turn. Now computation is entering 
economics and is changing our understanding, largely in the form of agent-based modeling. In 
this paper1 I want to discuss how this is happening and ask three questions about it. What is 
the relation between complexity economics and computation, in particular agent-based 
computational modeling? What advantages does computation bring to economics? And does 
computation have a wider role in economics than agent-based modeling?  

Complexity economics and agent-based modeling 

Standard, neoclassical economic theory views agents in the economy (producers, investors, 
banks, government agencies) as rational decision makers facing well-defined problems and 
reacting with optimal behavior. To make this amenable to mathematics, it assumes the agents 
are representative (fall into one or a small number of types) and have knowledge of these types, 
and that their behavior is in equilibrium with—consistent with—the outcomes this behavior 
creates.2 This approach has worked well, but over the years economists have felt its assumptions 
were not always realistic, and have sought a different approach (see Simpson, 2013).  

Complexity economics, which started largely at the Santa Fe Institute in the late 1980s, 
relaxes these assumptions and seeks a more realistic way to look at the economy (Arthur 1999, 
2015a, 2021a). It assumes more generally that agents in the economy differ and that their 
experience and resources and circumstances differ. This immediately brings up a problem. If 
we admit the reality of heterogenous agents or firms, we open to a situation of fundamental 
uncertainty: agents in general do not know what other agents will do and cannot assign 
probabilities to this. In this circumstance, the problem agents face becomes ill-defined, which 
means that a “logical response” becomes ill-defined, which means that “rationality” itself 
becomes ill-defined. It ceases to exist. The standard theory comes to a halt. 

People do however act within situations that are ill-defined. Typically they generate 
hypotheses or ideas about the situation they are facing, try to make sense, explore, try out ideas 
and discard responses that don’t work, and occasionally they come up with novel responses. 
These reactions in turn change the situation or outcome, so that agents may have to react or 
adjust again, and no equilibrium need necessarily emerge. In certain cases it may be possible to 

 
* Santa Fe Institute, PARC, and Stellenbosch Institute for Advances Studies (STIAS). 



 2 

model this using algebraic equations, but more generally these complications force models to 
be computational, and this is where agent-based modeling comes in. Models rely heavily on 
agents’ behavioral responses and so we think of them naturally as agent-based.  

The thinking behind agent-based modeling needn’t necessarily derive from complexity 
economics, though often it does. Indeed some of the very early agent-based models, the El 
Farol Bar problem (Arthur 1994), the Santa Fe Artificial Stock Market (Palmer et al, 1994; 
Arthur et al, 1997), came out of complexity economics. Whatever their basis, agent-based 
models have become widely popular in economics (for overviews see Tesfatsion & Judd, 2006; 
Axtell and Farmer, 2022; Hommes and LeBaron, 2018). Indeed, an approach related to 
complexity economics is called agent-based computational economics [ACE] (Tesfatsion 2006, 
2021a, 2021b). Complexity economics and ACE overlap considerably.3 Where complexity 
economics starts from a theoretical viewpoint and arrives at agent-based computational 
modeling, agent-based computational economics starts with a method, agent-based modeling, 
and uses complexity thinking as a backdrop to this. Whichever label we use, if we venture 
beyond neoclassical assumptions and admit significant heterogeneity or fundamental 
uncertainty or nonequilibrium, we require computation to arrive at outcomes. 

What can agent-based computational models provide?  

Computational modeling (I’ll speak in this section mainly of agent-based modeling) is still 
relatively new in economics. What does it provide that is worthwhile? And what can it show us 
that is different? If we compare it to the standard equation-based approach, the two traditions 
have much in common.4 Both approaches trace a pathway from agent behavior to its implied 
outcome. But each has different advantages. Equation-based modeling allows us to reach 
conclusions exactly and reliably based on clearly stated assumptions, following the logic step by 
step and thus understanding what it reveals. Computational modeling lacks this advantage, but 
it compensates by allowing more precise modeling.  

This may seem counter-intuitive. Usually we think of equation systems as exact and 
computation as ad-hoc and inexact. But the exactness of equations is an illusion. “As soon as 
you write an equation it is wrong,” said physicist Albert Tarantola, “because reducing a complex 
reality to an equation is just too simplistic a view of things” (quoted in Bailey 1996, p.29). In 
fact, much of mathematics-based economic theory consists of pointing out how averaged 
things (unemployment, say) affect averaged things (inflation, say), which yields at best coarse-
grained theory. This hides a lot of what is really going on. A production function links average 
inputs to average outputs, but it tells us nothing about the technology or detailed organization 
or means by which this all-important transformation happens. Standard economics adopts such 
idealized assumptions because equation systems need to stay simple to be mentally manageable. 
Algorithms by contrast can be expanded to encompass an arbitrary amount of realistic detail. 
They can thus tell a more nuanced story and avoid mean-field approximations. Where the 
inclusion of realistic details matters algorithms are more accurate. 

In theory then, a computational approach can take us beyond an equation-based one with 
its forced simplicities. It is useful to regard computational models as laboratory experiments, 
running these to see what they reveal, exploring what phenomena appear and the conditions 
under which they appear. Models can be set up as carefully-designed computer experiments, 
and we can use these to isolate phenomena, explore phase changes and the mechanisms that 
cause them. Sometimes we can construct simpler toy models of a phenomenon that capture its 
essential features and allow us to use mathematics or stochastic theory to study it. The objective 
here, whatever method we use, is to obtain general insights. Rigor in a computational setting 
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needs to widen from correctness of the logic that connects assumptions to their implications, 
to insistence on honest, realistic modeling with reproducible, verifiable results. 

§ 

One test of computation in economics is whether it can demonstrate or explain phenomena 
that the standard equation-based framework cannot. Are there findings that come from 
computational modeling the standard approach can’t easily see?  

I believe there are. Let me give one example, the theory of asset pricing (or stock market 
pricing). The classic equation-based approach (Lucas 1978) assumes identical investors using 
identical forecasting models that are on average statistically validated by the prices they forecast. 
This rational-expectations approach works well to explain how market prices form how they 
reflect the sequence of random earnings, and it has been much lauded. But it has some key 
failings. In this imagined market no trade takes place at all. This is because the investors are 
identical. If one of them wants to buy, all want to buy and there are no sellers to make the trade; 
if one wants to sell, all want to sell and no buyers exist. The stock price simply alters to reflect 
changes in demand. Also, the theory cannot account for real market phenomena such as the 
emergence of a market psychology, or price bubbles and crashes, or periods of random  high 
and low price variations (volatility), or the emergence of technical trading (trades based on the 
recent history of price patterns).  

The Santa Fe artificial stock market model, an early agent-based computational model set 
up in 1988, works differently (Palmer et al, 1992; Arthur et al, 1997). In this model our ‘investors’ 
or agents are small but intelligent computer programs that can differ from one another. These 
share no self-fulfilling forecasting method, but are required somehow to learn or discover 
forecasting methods that work. Our investors randomly generate their own individual 
forecasting methods, try out promising ones, discard methods that don’t work and occasionally 
generate new methods to replace them. They get smarter as they do this. They make bids or 
offers for a stock based on their currently most accurate methods and the stock price forms 
from these—from our investors’ collective forecasts.  

This computer experiment, when we ran it, showed two regimes or phases. At low rates of 
investors’ exploring, the market behavior converged into Lucas’s rational-expectations 
equilibrium.  Investors’ forecasts are “attracted” into becoming alike and so trading fades away. 
Here, the neoclassical outcome holds. But if our investors try out new forecasting methods at 
a faster, more realistic rate, the system undergoes a phase transition and a complex regime 
emerges. The market develops a rich psychology of different beliefs; a robust volume of trade 
emerges; price bubbles and small crashes appear; technical trading emerges; and random 
periods of volatile trading and calm trading emerge.  

In other words, phenomena we see in real markets emerge5. 

We see this last phenomenon of random periods of high and low volatility because if some 
of our investors occasionally discover new profitable forecasting methods, they will invest 
more. This alters the market slightly, and so other investors also change their forecasting 
methods and their bids and offers. Changes in forecasting beliefs in this way propagate through 
the market in avalanches of all sizes, and this causes periods of high and low volatility.  

I should point out here that phenomena such as technical trading, or bubbles and crashes 
random volatility, are not “departures from rationality.” Outside of equilibrium, “rational” 
behavior is not well-defined. These features arise from agents discovering behavior that works 
temporarily in situations caused by other agents discovering behavior that works temporarily. 
This is neither rational nor irrational, it merely emerges. 
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A deeper role for computation in economics 

So far I have been discussing computation in economics mainly as agent-based modeling. 
Now I want to talk about a wider role for computation in economics.6 In what follows I will 
talk about standard mathematics or “algebraic mathematics,” where I mean standard algebra, 
linear algebra, and calculus as used in economic modeling. And I will switch from talking about 
“computation” to talking about algorithms. I will borrow heavily from Algorithmic Information 
Theory, as developed by mathematician Gregory Chaitin (1990, 2006) and others. 

Algorithms are methods, they are specified processes. Computations are narrower; they are 
operations that happen when we "compute out" the numerical consequences of some set of 
instructions. In this sense Gale and Shapley's (1962) famous solution to the college admission 
problem is an algorithm. It is a general process, instructions if you like, for matching students 
with colleges; using it in a particular setting is a computation. Similarly Roth et al.’s (2004) organ 
allocation process for kidney transplants is an algorithm, or method; using it to assign organs is 
a computation. Both studies offer algorithms as solutions to particular economic problems, but 
the solutions are abstract processes, not particular computations themselves. Notice that 
algorithms here are objects to be sought and they stand in their own right. This way of thinking 
is not new in computer science. Turing (1936) viewed algorithms—he called them 
“methods”—as mathematical objects in themselves, and used them abstractly in his proofs. 
Algorithms then become objects in a different form of mathematics—algorithmic 
mathematics7—which we can think of as a language for creating algorithms and “the mind-set 
of thinking in terms of algorithms for solving problems and developing theory” (Maurer, 1984). 
This mathematics, as Turing (1936), Chaitin (2006) and Wolfram (2002) have shown us, gives 
us a different world, one that's just as logical and “mathematical” as the algebraic one.  

We can then say this. Standard modeling uses sets of equations combined logically to model 
systems; in doing this it draws from algebraic mathematics as a language of expression. 
Computational modeling uses sets of statements combined logically to express the workings of 
some system; in doing this it draws from algorithmic mathematics as a language of expression. 
We have two languages, algebraic mathematics and algorithmic mathematics, as means by which 
to model systems. These have much in common, but differ in what they can easily express. 
Algebraic mathematics models quantities balancing quantities in equation systems; and new 
quantities issuing from previous quantities in differential systems. It excels at modeling relations 
between quantities.8  

Algorithmic mathematics excels at modeling processes, or actions if you like.  

It does this easily because algorithms themselves are sets of actions: do this, sort that, 
evaluate this, and so actions enter directly. Actions also enter indirectly. Algorithms allow 
conditional branching—they contain if-then clauses—so we can have descriptions saying: If 
process G and H have been completed, and if process M has begun, then execute sub-process 
K. Algorithmic modeling allows processes, actions and events, so we can have actions inhibiting 
other actions, actions triggering other actions, actions calling other actions. This is powerful: it 
opens a wide range of possibilities in understanding the economy not as a set of quantities—
prices, indices, amounts—that move up and down, but as a set of entities—institutions, 
arrangements, structures, solutions, organizations—being sequentially constructed.  

Algorithmic mathematics, then, allows us to tell process-based "stories" that can be far 
richer than the standard noun-restricted ones: stories about formation and structural change 
and creation and development. This point seems somewhat abstract, but it is fundamental. The 
mathematical language we use in a science shapes our understanding in that science (Gisin, 
2021); in this case it widens our understanding of how the economy operates.   

§ 
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How do these ideas apply to economics in general? In an earlier paper (Arthur, 2015b) I 
pointed out that there are two great problems in economics. One is allocation within the 
economy: how quantities of goods and services and their prices are determined within and 
across markets. This is represented by the great theories of general equilibrium, international 
trade, and game-theoretic analysis. The other is formation within the economy: how an economy 
emerges in the first place, and grows and changes structurally over time. This is represented by 
ideas about innovation, economic development, structural change, the role of history, 
institutions, and governance in the economy. The allocation problem is well understood and 
highly mathematized; the formation one less well understood and barely mathematized.  

An algorithmic approach above anything else allows problems of formation in economics 
to be studied. Because it allows processes to be included, it stands to show us economic 
development not as a series of quantity adjustments to GDP or industry, but rather as a set of 
actions—millions of actions, perhaps—setting up trades and small entrepreneurships, getting 
education moving, forming new habits of business, deepening banking systems, creating new 
products and services. We can see development directly as a process. More generally, an 
algorithmic approach can show us how institutions form, and how technological innovation 
works to transform and re-create the economy. We can then bring these questions into formal 
economic theory. A process view in economics shows us a world where large and small 
structures continually form, where agents and organizations continually respond to their 
internal and external environment, where agents can change from within, where fresh 
undertakings continually create novelty. In all these senses the economy comes alive.  

We still have one point to settle. We accept conventionally that algebraic models constitute 
theory in economics. Can algorithms also constitute theory? My answer is yes. I will simply 
summarize the argument (see Arthur 2021b) here: Chaitin (2006), points out that theories are 
condensed descriptions of how some system works. Newton’s equations are thus condensed 
descriptions of the motions of planets: we can “decompress” or unfold the information 
contained in them to arrive at elliptical planetary orbits. As such Newton’s equation-based 
system constitutes a “theory” of planetary orbital information. The same can be said for 
algorithms. If we have an algorithm that says Write two 0s, then two 1s, then repeat, it will 
produce that sequence 0011 0011 0011 0011 indefinitely. The algorithm is a compression of 
the information in the computed system, and just as with Newton we can say it constitutes a 
“theory” of the system. Algorithms used to describe systems—to condense the information in 
a complicated situation—are theories of such systems. It follows that if economic models based 
on algorithmic specifications are condensed descriptions of how systems work, we can see them 
as theory proper, just as we see equation-based descriptions as theory proper.  

Conclusion 
What I take away from these ideas is that computation in economics means more than 

simulation or agent-based modeling. It offers economics an alternative mathematics, 
algorithmic mathematics, within which new solutions can be constructed. Algorithmic 
mathematics thus stands alongside algebraic mathematics as a new language for theory in 
economics.  

Of course the world that computation reveals is not one of rational perfection, and it is not 
mechanistic. It is more biological than anything else. Its agents are constantly acting and reacting 
within an “ecology” of behaviors brought about by other agents acting and reacting. 
Algorithmic expression allows novel, unthought of behaviors, novel formations, structural 
change from within—it allows creation. It gives us a world that is constantly creating and re-
creating itself. The proper use of computation, I believe, is to explore this realm that lies beyond 
our current limitations. 
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There is a danger of course that economics will not open to this world but will stick to its 
realm of stasis, order, and perfection. But I don’t think that will happen. Economics will change 
if for no other reason than that all the other sciences are changing. They are wondering how 
structures are generated. They are getting away from static objects to ideas of process. They are 
embracing uncertainty, ill-definedness, and unpredictability, and dropping their Newtonian 
insistence on a predictable, ordered world. Economics is opening slowly to this change in 
Zeitgeist and beginning to accept nonequilibrium, ill-defined problems, and processes. More than 
anything else, computation is catalyzing this change and making it possible. So too is biology, 
which is a field of processes (speciation, embryonic development, protein expression) 
responding to and inhibiting other processes. Inevitably economics will open to these changes 
in the thinking of our times.  
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Endnotes 
1 In this paper I heavily use ideas from previous papers of mine (Arthur 2015b, 2020, 2021a, 2021b). 
2 Other, similar approaches to economics also use computation (e.g. Epstein, 2006).  
3 ACE was named by Tesfatsion in 2006; complexity economics was named by Arthur in 1999. 
4 Indeed, computational models often contain equations. 
5 Studies by LeBaron et al. (1999), Kopel (2009), Hommes (2009), Galla and Farmer (2013), similarly find 
regime transitions from equilibrium to complex behavior in nonequilibrium models.  
6 For a wider view see Mirowski (2002) and Roth (2002). 
7 Like standard mathematics, algorithmic mathematics has its own grammar, vocabulary, rules, and 
habitual structures, and often these are expressed in the form of a programming language, such as Python, 
or C++. Algorithmic mathematics can include equation systems from standard mathematics, and it 
includes a large component of logic, in this case Boolean logic. 
8 For a fuller discussion of how standard mathematics is noun/quantity based, how algorithmic 
mathematics is verb/process based, and the implications of this, see Arthur (2021b).   


